SMTA International Conference Proceedings


Rheology and Wetting Characterizations of Flux and Solder Paste for Bga Packages

Authors: Jinlin Wang, Ph.D.
Company: Intel Corporation
Date Published: 10/14/2018   Conference: SMTA International


Abstract: Package failures related to solder joint reliability need to be addressed at the first level, second level, and package to socket interconnects. As the ball size, pitch, and ball to ball spacing are reduced, it poses a challenge to material and process development. Flux materials are typically used in the solder process to remove the oxides on the pad and solder surfaces. A clean surface results in a stronger solder joint. Due to the flux chemistry and formulation differences, the rheological behavior of the fluxes can vary. There are two types of commonly used flux materials in terms of their rheology properties: Newtonian and non-Newtonian fluids, depending on the formulation chemistry. Fluxes with non-Newtonian fluid behavior have complex rheological properties. Flux viscosity has always been an important material property for manufacturability. It is critical to have a good understanding of the rheology properties of the flux and paste and its correlation with process and package parameters. This can help in optimizing the process conditions and reducing manufacturing related defects. The rheological properties and wettability of fluxes and pastes were studied. The rheological properties of flux and pastes were measured across a wide range of shear rates with various rheometers to correlate the rheological properties with process conditions. Wetting angles of the flux were measured for flux spread studies. The process of solder joint formation relies heavily on wetting parameters such as solder wetting force and wetting time in the presence of flux and/or solder paste materials. The correlation between wetting parameters, package assembly yield, and reliability data can provide a guideline for flux and solder paste material selection and process optimization.

The solder wetting balance test is one of the most common methods for solder wetting evaluation. This method can be used for flux, solder, and surface finish evaluations. The method with a molten solder pot, however, cannot be used for solder paste evaluation since the paste is a mixture of solder and flux.

In this paper, we will discuss a solder paste wetting method. A high resolution solder wetting balance was used for the solder paste wettability analysis. Solder wetting analysis for solder balls and solder paste with different pre-test conditions provide useful information for material selection and reflow process optimization studies. The effects of solder surface oxidation and paste aging on the solder-paste wetting interactions were investigated.

Wetting balance tests were performed for the characterization of paste and solder ball wetting behaviors. In addition, the understanding of the effect of solder ball reflow in relation to paste wetting was also analyzed in this work. In general, wetting test results showed that paste aging and improper paste used in SMT resulted in significant reduction in the wetting force. For the case of a multiple-reflowed solder ball, a decreasing trend in the wetting force was observed. The high resolution solder wetting balance was proven to be a useful technique in supporting the development of SMT paste materials.

Key Words: 

flux, solder paste, rheology, solder wetting, materials process



Members download articles for free:

Not a member yet?

What else do you get when you join SMTA? Read about all of the benefits that go along with membership.

Notice: Sharing of articles is restricted to just your immediate work group. Downloaded papers should not be stored on an external network or shared on the internet.


Back


SMTA Headquarters
6600 City West Parkway, Suite 300
Eden Prairie, MN 55344 USA

Phone +1 952.920.7682
Fax +1 952.926.1819