SMTA International Conference Proceedings


Comparison of Reliability of Copper, Gold, Silver, and Pcc Wirebonds Under Sustained Operation at 200C

Authors: Pradeep Lall, Shantanu Deshpande and Luu Nguyen
Company: Auburn University and Texas Instruments, Inc.
Date Published: 10/14/2018   Conference: SMTA International


Abstract: Semiconductor packaging industry is transitioning to use of alternate lower cost wirebond materials to replace gold (Au) wire which is often used in high-reliability applications. Typical wire diameters vary between 0.8mil to 2mil. Recent increases in the gold-price have motivated the industry to search for alternate materials candidates for use in wirebonding. Three of the leading wirebonding candidates are Silver (Ag), Copper (Cu), and Palladium Coated Copper (PCC). The new material candidates are inexpensive in comparison with gold and may have better electrical, and thermal properties, which is advantageous for fine pitch-high density electronics. The transition, however, comes along with few trade-offs such as narrow process window, higher wire-hardness, increased propensity for chip-cratering, lack of reliability knowledge base of when deployed in harsh environment applications. Relationship between mechanical degradation of the wirebond and the change in electric response needs to be established for better understanding of the failure modes and their respective mechanisms. Understanding the physics of damage progression may provide insights into the process parameters for manufacture of more robust interconnects. In this paper, a detailed study of the electrical and mechanical degradation of wirebonds under high temperature exposure is presented. Four wirebond candidates (Au, Ag, Cu and PCC) bonded onto Aluminum (Al) pad were subjected to high temperature storage life until failure to study the degradation of the bond-wire interface. Same package architecture and electronic molding compound (EMC) were used for all four candidates. Detailed analysis of intermetallic (IMC) phase evolution is presented along with quantification of the phases and their evolution over time. Ball shear strength was measured after decapsulation. Measurements of shear strength, shear failure modes, and IMC composition have been correlated with the change in the electrical response. Change in shear strength and different shear failure modes for different wirebond systems are discussed in the paper.



Members download articles for free:

Not a member yet?

What else do you get when you join SMTA? Read about all of the benefits that go along with membership.

Notice: Sharing of articles is restricted to just your immediate work group. Downloaded papers should not be stored on an external network or shared on the internet.


Back


SMTA Headquarters
6600 City West Parkway, Suite 300
Eden Prairie, MN 55344 USA

Phone +1 952.920.7682
Fax +1 952.926.1819