Pan Pacific Symposium Conference Proceedings

Joining of Pure Copper Using Cu Nanoparticles Derived from CuO Paste

Authors: Tomoyuki Fujimoto, Tomo Ogura, Tomokazu Sano, and Akio Hirose
Company: Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University Suita
Date Published: 1/25/2016   Conference: Pan Pacific Symposium

Abstract: A paste containing CuO particles and polyethylene glycol 1000 as a reducing solvent has been applied to joining pure Cu in electronic applications, and the bondability of the joints and bonding mechanism were investigated. Based on a combination of thermogravimetric and differential thermal analysis, pressurization in the bonding process was determined to be started at temperatures near the exothermal peak of 320°C. Pressurization started at a temperature of 320°C, with the 11 MPa shear strength of the Cu-to-Cu joint being 2.4 times greater than a joint pressed at room temperature. During the bonding process, CuO particles were not directly reduced to Cu, but were instead first reduced to Cu2O nanoparticles, which were subsequently reduced to Cu nanoparticles, and an oxide film of a Cu substrate was also reduced, thus ensuring a direct connection between a sintered Cu layer and substrate. The shear strength increases with holding time. Moreover, the shear strength of a joint created with CuO paste and a holding time of 15 min (20 MPa) is in fact higher than what can be achieved using a conventional lead-rich Pb-5Sn solder, thus making it well-suited for use in electronic applications.

Key Words: 

Copper Nanoparticles, Copper Oxide, Reduction, Copper Joint

Members download articles for free:

Not a member yet?

What else do you get when you join SMTA? Read about all of the benefits that go along with membership.

Notice: Sharing of articles is restricted to just your immediate work group. Downloaded papers should not be stored on an external network or shared on the internet.


SMTA Headquarters
6600 City West Parkway, Suite 300
Eden Prairie, MN 55344 USA

Phone +1 952.920.7682
Fax +1 952.926.1819