SMTA International Conference Proceedings

Testing Intermetallic Fragility On ENIG Upon Addition Of Limitless Cu

Authors: Martin K. Anselm, Ph.D. and Brian Roggeman
Company: Universal Instruments Corporation
Date Published: 10/16/2011   Conference: SMTA International

Abstract: As reliability requirements increase, especially for defense and aerospace applications, the need to characterize components used in electronic assembly also increases. OEM and EMS companies look to perform characterizations as early as possible in the process to be able to limit quality related issues and improve both assembly yields and ultimate device reliability. In terms of BGA devices, higher stress conditions, RoHS compatible materials and increased package densities tend to cause premature failures in intermetallic layers. Therefore it is necessary to have a quantitative and qualitative test methodology to address these interfaces. Typically, solder ball shear or pull testing is employed to measure the interfacial strength, sometimes requiring very high speeds to do so. While there is no current industry accepted specification on proper test speeds, strength or energy metrics, procedures do exist which allow for relevant comparisons. These tests are always run on unassembled BGA devices, so the interaction with the PCB is completely removed. While the data is useful for the component manufacturer, the risk is that the test does not fully represent the final assembly in terms of metallurgical condition. Specifically when BGA components using a Nickel-Gold surface finish are soldered to PCBs with a Cu-based pad (ie, Cu-OSP, ImmAg, ImmSn or HASL), there will be additional Cu dissolved into the solder joint. The addition of this copper can have an important effect on the intermetallic structure at the ENIG pad. Current mechanical solder ball testing procedures on unassembled BGA devices do not accurately duplicate the condition of this intermetallic structure. The test results on ENIG pads will then not necessarily correlate to actual manufacturing reliability. From this research we have determined that generating an intermetallic morphology that is similar to a standard mass reflow surface mount process is not straight forward. The method used to add Cu to the ENIG pad and lead-free solder system will affect the morphologies at the electroless Ni substrate and therefore the mechanical properties of the intermetallic. Data is presented on the intermetallic strengths and failure modes of two bond pull test methods. Specifically Hot Bump Pull (HBP) and Cold Bump Pull (CBP) testing are compared where Cu is added by the copper pins of the HBP tester or by Cu power in a second reflow followed by CBP testing.

Key Words: 

Limitless Cu, ENIG, intermetallic morphology, fragility, lead-free

Members download articles for free:

Not a member yet?

What else do you get when you join SMTA? Read about all of the benefits that go along with membership.

Notice: Sharing of articles is restricted to just your immediate work group. Downloaded papers should not be stored on an external network or shared on the internet.


SMTA Headquarters
6600 City West Parkway, Suite 300
Eden Prairie, MN 55344 USA

Phone +1 952.920.7682
Fax +1 952.926.1819