Scott Nelson is a Manufacturing Engineer at Harris Corporation. He has over 20 years of experience in electronics manufacturing, primarily in the avionics field. He holds a Bachelors degree in Industrial Engineering from the University of Nebraska.

During his employment at Harris Corporation, Scott has been a project leader for advanced manufacturing processes. He has been involved in numerous solder joint reliability studies, and has been an active participant in the NASA DoD Lead-free Study and the AIA LEAP Working Group.

As an active participant in SMTA, Scott has authored whitepapers on X-ray Inspection Radiation Exposure Damage of Electronic Components, Lead-Free Wave Soldering for Hi-Reliability Applications, BGA Failure Analysis, and QFN Land Pattern Design & Assembly.

Scott has also held numerous positions on the SMTA Space Coast Chapter board including VP of Technical, Vice President, and President and is currently on the SMTA National Board of Directors planning committee.
Bottom Termination Component Land Pattern Design and Assembly for High Reliability Electronic Systems

Presented by
Scott Nelson
September 10, 2013
Design Rules & Assumptions
Solder Joint Requirements
Land Pattern Design
Solder Mask Considerations
Thermal Vias
Stencil Design Guidelines
Solder Paste & Reflow
Component Plating Concerns
Conclusions & Recommendations
Q & A
Overview

- Land pattern design has become more complex due to:
 - Very small feature sizes
 - Finer pitch
 - Bottom terminations

- Industry land pattern design practices for QFN?
 - Un-specified solder joint requirements

- Design principles for leadframe vs. bottom termination can be very different

- Mixed assembly of 50 mil pitch leadframe components and 20 mil pitch leadless components adds many challenges to the assembly process

- ‘Cleanability’ under low standoff components needs to be addressed

Do not use leadframe land pattern design methods for leadless QFN land pattern design
Design Rules / Assumptions

- Avoid using solder mask defined (SMD) land pads
- Avoid routing peripheral lands to the thermal land
 - Route all peripheral lands to vias outside of the land pattern to minimize solder thieving
 - No routes from peripheral lands to the thermal land will allow using the minimum electrical clearance gap of 8 mils
- Avoid shorting lands together within a QFN footprint
 - May result in improper, non-coplanar component seating
- Do not use solder mask within the QFN land pattern unless circuit routing to the thermal land is required
- Minimum electrical clearance is 8 mils
- Standard photo imaging solder mask alignment allowance is +/- 3 mils
- Minimum solder mask web width is 4 mils
- PCB fabrication (etch) tolerance is 2 mils
Solder Joint Requirements

- For BTC components, solder joint requirements are defined by IPC-7093
- Inspection requirements per IPC-610 Class 3 + J-STD-001 Space Addendum
- For hi-rel, minimum toe fillet height is unspecified in both IPC-7093 & IPC-610
 - Use Class 3 criteria for similar components: solder joint thickness plus 25% of the termination height
 - Land pattern design must account for typical QFN copper lead frame thickness of approximately 6-8 mils.
 - Target value for QFN toe fillet height for high reliability designs is 50% of the termination height
 - Rule of thumb for the toe solder joint length allowance for QFN’s is to extend the land pad out by at least the amount of the desired total solder joint fillet height
- Assuming an 8 mil copper termination thickness (height), a 2-3 mil solder joint standoff height, and 75% solder wetting height target, an 8 mil land extension will be used to ensure a good toe fillet
- Design the land pattern for symmetry with respect to the component terminations

Solder joint requirements need to be defined for proper land pattern design
Solder Joint Targets

- Target land pattern solder joint fillet allowances (Class 3+):
 - **Peripheral Lands:**
 - Toe Fillet (Jt) = 8 mils
 - Heel Fillet (Jh) = 2 mils
 - Side Fillet (Js) >= 0 mil (no overhang)
 - **Thermal Land:**
 - Fillet >= 0 mil (no overhang)

<table>
<thead>
<tr>
<th>Feature</th>
<th>IPC-610 Criteria</th>
<th>Notes</th>
<th>Hi-Rel (Class 3+) Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Side Fillet</td>
<td>-25% of Termination Width</td>
<td>1</td>
<td>0 to 2 mil fillet</td>
</tr>
<tr>
<td>Toe fillet length</td>
<td>> 0</td>
<td></td>
<td>8 mil fillet</td>
</tr>
<tr>
<td>Heel fillet length</td>
<td>Not specified / not inspectable</td>
<td>1</td>
<td>2 mil fillet</td>
</tr>
<tr>
<td>Thermal pad overhang</td>
<td>Not specified / not inspectable</td>
<td>1</td>
<td>2 mil fillet</td>
</tr>
<tr>
<td>Minimum End Joint Width</td>
<td>75% of Termination Width</td>
<td></td>
<td>100% of Termination width</td>
</tr>
<tr>
<td>Standoff Height</td>
<td>Wetting is evident</td>
<td></td>
<td>2 - 3 mils</td>
</tr>
<tr>
<td>Minimum Toe Fillet Height</td>
<td>Variable by design</td>
<td>2</td>
<td>6 mil if solderable</td>
</tr>
</tbody>
</table>

Table 1 - IPC-610 Class 3 Solder Joint Dimensional Criteria for BTC’s

Notes:
1. Does not violate minimum electrical clearance
2. Not required if surface isn’t solderable
Land Pattern Design

- For high reliability applications, the key to good solder joint reliability is a robust land pattern design
- IPC Class 3 solder joint requirements are a good starting point but modifications may be required to meet reliability and performance requirements for the intended end-use environment
- For maximum thermal performance, maximizing the thermal land dimensions is preferred
- Fillet ‘wrap-around’ is preferred
- Positive fillets preferred

Undercut or negative fillets should be avoided
Land Pattern Design

Boundary Design Method

- Establish boundaries based upon minimum electrical clearance, min/max solder joint requirements, and symmetry with respect to the component pads
- For QFN components there are 3 boundaries that are defined by minimum electrical clearance requirements, solder joint requirements, and component package maximum tolerances
 - B0: Peripheral land outer boundary
 - B1: Thermal land boundary
 - B2: Inner peripheral land boundary
- The gap around the center land should be a minimum of 8 mils but preferred minimum gap is 10 mils
- For dual row QFN’s (DQFN) additional boundaries B3 and B4 may be included for the inner and outer extents of the 2nd row of lands
Boundaries

- The outer boundary B0 calculation takes into account:
 - Solder joint toe fillet J_t
 - PCB etch tolerance F
 - Maximum component package dimensions A_{max}

- The thermal land boundary B1 calculation takes into account:
 - Symmetry with respect to nominal component package thermal land gap
 - Minimum electrical clearance from the inner edge of the peripheral lands
 - Maximizing the thermal land for maximum thermal performance

- The inner peripheral land boundary B2 calculation takes into account:
 - Symmetry with respect to nominal component package thermal land gap
 - PCB etch tolerance F
 - Minimum electrical clearance with respect to the thermal land

Land pattern design boundaries are based upon minimum electrical clearance AND solder joint requirements
1. Determine the nominal centerline of the gap (CLg) between the QFN thermal pad and the inner edges of the peripheral pads

\[CLg = \frac{(A + Wt)}{2} - T - PB \]

Where:
- \(A \) = Package dimensions
- \(Wt \) = Thermal pad dimensions
- \(T \) = Peripheral pad length
- \(PB \) = Peripheral pad pullback if applicable

(Standard pullback is 4 mils)

The above equations are based upon the QFN package nominal dimensions since the goal is to achieve land pattern symmetry with respect to the component package.

QFN land pattern design should be symmetric about the component thermal pad gap.
2. Establish the 3 land pattern boundaries

 The peripheral land outer boundary:
 \[B_0 = A_{\text{max}} + 2*J_t - 2*P_B + F \]

 The thermal land boundary:
 \[B_1 = C_{Lg} - W_g \]

 The peripheral land inner boundary:
 \[B_2 = C_{Lg} + W_g \]

Simplify the boundary equations for the known/desired values:

 \[W_g = 10 \text{ mils preferred, 8 mils minimum} \]
 \[J_t = 8 \text{ mils (Solder joint toe fillet)} \]
 \[F = 2 \text{ mils (PCB etch tolerance)} \]

\[B_0 = A_{\text{max}} - 2*P_B + 18 \text{ mils} \]
\[B_1 = C_{Lg} - 10 \text{ mils} \]
\[B_2 = C_{Lg} + 10 \text{ mils} \]
3. Calculate the thermal land dimensions:
 \[X2 = \text{Wtmax or } B1 \text{ whichever is less} \]
 Where: \(\text{Wtmax} = \) Maximum QFN thermal pad dimension

4. Calculate the inner edge of the peripheral lands:
 \[Y1_{\text{in}} = B2 + (B1 - X2) \]

5. The peripheral land length is:
 \[Y1 = \frac{(B0 - Y1_{\text{in}})}{2} \]
6. The peripheral land width X1 is a function of pitch and should allow for a positive side fillet (Js>=0) if possible

\[X1 = W_{\text{max}} + F \] or \[X_{\text{max}} \] whichever is less

Where:

\(F \) = PCB etch tolerance = 2 mils
\(W_{\text{max}} \) = Maximum QFN peripheral pad width
\(X_{\text{max}} \) = Maximum PCB land width per Table 2

<table>
<thead>
<tr>
<th>Pitch</th>
<th>PCB Xmax (mils)</th>
<th>Typical Wmax (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>0.65</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>0.5</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>0.4</td>
<td>16</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2 – Maximum PCB land widths
Xmax and typical maximum component pad dimensions Wmax

Note: Minimum electrical clearance Cle must change from 8 mils to 6 mils for 0.4mm pitch
Design Steps

7. The center-to-center spacing of the peripheral lands on opposite sides of the land pattern, also known as padstack (S), is calculated as follows:

$$S = B0 - Y1$$

We’re done with design - No more equations!
Solder Mask Considerations

- Robust QFN land pattern design excludes the use of solder mask within the footprint for the following reasons:

 1. Solder mask defined pads (SMD) may create a stress riser on solder joints that can lead to solder joint cracking and premature failure

 2. Non solder mask defined pads (NSMD) allow the solder to wrap around the sides of the PCB lands and improves reliability

 3. Due to the low standoff height of QFN's, it is preferred to maximize the under-component gap in order to maximize cleaning efficiency
 - Effective cleaning gap increases by the thickness of the solder mask
 - Solder mask over traces makes the gap even smaller

 4. Flux residues left underneath QFN component packages may lead to corrosion or electro-migration related failures

Avoid using solder mask within a QFN land pattern for maximum cleanability and solder joint reliability
Flux Entrapment / Cleaning

- If routing of peripheral lands to the thermal land cannot be avoided, then solder mask stripes should be applied only over the circuit lines and not around the entire thermal pad (window pane).
- Do not solder mask define the thermal land.

Example of solder mask stripes instead of 'window pane'.

Flux has been allowed to escape from the thermal land solder joint.
Thermal Vias

- Vias can be open or filled, covered with solder mask, over-plated, or even plated shut
- Open vias should be avoided for hi-rel designs
 - May cause lower standoff height due to solder wicking down the vias
 - Partially solder filled vias may lead to via cracking during thermal cycling
- The preferred via structure for high reliability applications is the IPC type VII filled and over-plated via
- Use a fill material that is thermally conductive with very low shrinkage to minimize via dimples which can trap flux and cause voiding
- Fill material CTE should closely match the PCB material CTE
- Use only outgas compliant materials (typically stated as 100% solids content)
Stencil Design

- Reduce the solder paste area coverage for the thermal land by approximately 1/3
- Print peripheral lands 1:1 with the PCB lands
- Solder stencil void reduction methods
 - 5 mil solder stencil thickness is typically sufficient – thicker may result in more voids due to more flux
 - Avoid printing solder paste directly over the center of vias where a dimple is likely
 - For the thermal land, window pane or cross hatch solder deposits should not be spaced more than 10 mils apart
 - Use a 45° cross hatch pattern for the thermal land instead of window pane to promote flux escape from the solder joint (no intersections)
 - If window pane design is used, minimize the number of window pane intersections
Solder Paste & Reflow

Solder Paste

- Solder paste can have a significant impact on voiding in QFN thermal land solder joints, especially for rosin-based, low activity solder pastes typically used for hi-rel assembly
- Use a low solids ‘no-clean’ type solder paste
 - Flux activity, composition, and activator chemistry may also impact voiding

Reflow Profile

- Reflow profile is typically dictated by other more massive components
- A ‘soak’ profile is usually best for void minimization but use caution not to go beyond flux activity limits
- Nitrogen atmosphere to reduce oxidation

It is a good idea to re-qualify your solder paste for void reduction and solderability with respect to QFN assembly
Component Plating Concerns

- Gold and other noble metals such as silver and palladium may cause solder joint embrittlement, especially in low volume, low standoff QFN solder joints
 - Avoid or remove these plating materials prior to assembly

- For high reliability applications, if a gold plating is any other than immersion gold, it should be removed prior to soldering as documented by J-STD-001, section 4.5
 - Double tin and wick or dynamic wave removal processes are the correct methods for plating removal / replacement

- IPC-7093, Section 8.2.6 provides guidance with respect solder joint embrittlement avoidance

Confirm immersion gold plating or remove gold from QFN components prior to assembly
Recommendations

- Follow hi-rel best practices for design rules and allowances
- Use the boundary design method to achieve:
 - Land sizes that will allow for adequate solder joint height and fillets
 - Land pattern symmetry with respect to the QFN package terminations
 - 10 mil gap around thermal land preferred, 8 mil minimum
- Use IPC Class 3+ for solder joint allowances
 - Toe Fillet (Jt) = 8 mils
 - Heel Fillet (Jh) = 2 mils
 - Side Fillet (Js) >= 0 mil (no overhang)
- Best practices for stencil design
 - Reduce the solder paste area coverage for the thermal land by approximately 1/3
 - Use a 45° cross hatch pattern for the thermal land instead of window pane
- Use a solder paste that is optimized for your QFN soldering process
 - Use a low solids ‘no-clean’ type solder paste with good oxide reducing activators
 - A solder paste requalification for BTC void reduction is recommended
Conclusions

- There’s no single solution to high yield, high reliability assembly of QFN components
- Must address all aspects from design through assembly including:
 1. Best land pattern design practices, especially solder mask
 2. Proper component package selection including plating / re-plating considerations
 3. Proper solder stencil design / thermal pad solder volume
 4. Solder paste re-qualification including void analysis and reflow profiling
References

1. IPC-7093, Design and Assembly Process Implementation for Bottom Termination Components, March 2011
2. IPC-A-610, Acceptability of Electronic Assemblies, February 2005
3. IPC-7351, Generic Requirements for Surface Mount Design and Land Pattern Standard, June 2010
4. IPC-7535, Stencil Design Guidelines, October 2011
5. J-STD-001, Requirements for Soldered Electrical and Electronic Assemblies, April 2010
Questions